Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma.

نویسندگان

  • Dianne E Godar
  • Robert J Landry
  • Anne D Lucas
چکیده

Cutaneous malignant melanoma (CMM) has been increasing at a steady exponential rate in fair-skinned, indoor workers since before 1940. A paradox exists between indoor and outdoor workers because indoor workers get three to nine times less solar UV (290-400 nm) exposure than outdoor workers get, yet only indoor workers have an increasing incidence of CMM. Thus, another "factor(s)" is/are involved that increases the CMM risk for indoor workers. We hypothesize that one factor involves indoor exposures to UVA (321-400 nm) passing through windows, which can cause mutations and can break down vitamin D(3) formed after outdoor UVB (290-320 nm) exposure, and the other factor involves low levels of cutaneous vitamin D(3). After vitamin D(3) forms, melanoma cells can convert it to the hormone, 1,25-dihydroxyvitamin D(3), or calcitriol, which causes growth inhibition and apoptotic cell death in vitro and in vivo. We measured the outdoor and indoor solar irradiances and found indoor solar UVA irradiances represent about 25% (or 5-10 W/m(2)) of the outdoor irradiances and are about 60 times greater than fluorescent light irradiances. We calculated the outdoor and indoor UV contributions toward different biological endpoints by weighting the emission spectra by the action spectra: erythema, squamous cell carcinoma, melanoma (fish), and previtamin D(3). Furthermore, we found production of previtamin D(3) only occurs outside where there is enough UVB. We agree that intense, intermittent outdoor UV overexposures and sunburns initiate CMM; we now propose that increased UVA exposures and inadequately maintained cutaneous levels of vitamin D(3) promotes CMM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Worldwide Increasing Incidences of Cutaneous Malignant Melanoma

The incidence of cutaneous malignant melanoma (CMM) has been increasing at a steady rate in fair-skinned populations around the world for decades. Scientists are not certain why CMM has been steadily increasing, but strong, intermittent UVB (290-320 nm) exposures, especially sunburn episodes, probably initiate, CMM, while UVA (321-400 nm) passing through glass windows in offices and cars probab...

متن کامل

North-South gradients of melanomas and non-melanomas

Incidence rates of skin cancer increase with decreasing latitude in Norway, as in many other countries with white populations. The latitudinal trends of the incidence rates of skin cancer were studied and compared with data for vitamin D-induced by UV and for vitamin D intake. The north-south gradient for CMM incidence rates on sun exposed skin is much smaller than those for BCC and SCC, and th...

متن کامل

Cutaneous malignant melanoma incidences analyzed worldwide by sex, age, and skin type over personal Ultraviolet-B dose shows no role for sunburn but implies one for Vitamin D3

Because the incidence of cutaneous malignant melanoma (CMM) was reported to increase with increasing terrestrial UVR (290-400 nm) doses in the US back in 1975 and a recent publication showed no association exists with UVR exposure at all, we set out to fully elucidate the role of UVR in CMM. To achieve this goal, we analyzed the CMM incidences over latitude and estimated the average personal UV...

متن کامل

Biologically efficient solar radiation

Solar ultraviolet (UV) radiation is the main source of vitamin D production and is also the most important environmental risk factor for cutaneous malignant melanoma (CMM) development. In the present study the relationships between daily or seasonal UV radiation doses and vitamin D status, dietary vitamin D intake and CMM incidence rates at different geographical latitudes were investigated. No...

متن کامل

Solar radiation and induction of DNA damages, mutations and skin cancers

An understanding of the effects of sunlight on human skin begins with the effects on DNA and extends to cells, animals and humans. The major DNA photoproducts arising from UVB (280-320 nm) exposures are cyclobutane pyrimidine dimers. If unrepaired, they may kill or mutate cells and result in basal and squamous cell carcinomas. Although UVA (320-400 nm) and visible wavelengths are poorly absorbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical hypotheses

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2009